Updated Theory of Everything (TOE)

Update of second article of

Antonio A. Colella Home Page

Copyright © February 28, 2025

by

Antonio A. Colella

Introduction

- Worked on 10 to 12 complex electronic projects including: phased array radars, helicopter motion/visual simulators
 - Projects similar in cost/complexity to LHC, Manhattan atomic bomb
 - My projects needed approximately 50% new design requirements
 - Phased array beamsteering in 1x10⁻⁶ s (new)
 - Transmitter power, receiver sensitivity (old)
- Spent 3 years on each project learning 90% of it
 - Understanding 100% required one's total career (e.g. Don Smith, Bob Dancy on US Air Traffic Control System)
- My strategy evident after TOE start
 - TOE was several orders of magnitude more complex than my 10-12 projects
- Started my self-taught TOE work during retirement at age 66
 - Contrast to physicists performing work in early career (e.g. Peter Higgs)
- Totally deaf
 - Lost 99% of hearing at age 13
- Because of my engineering background and deafness
 - I am slow on my feet to answer questions, but created both original TOE and this Updated TOE
 - Astrophysicists ignored me and my communications with them
- Made assumptions and created this Updated TOE

TABLE I. Fundamental SM/supersymmetric matter and force particles

Symbol	SM	Matter	Force	Symbol	Supersymmetric	Matter	Force
p ₁	graviton		х	p ₁₇	gravitino	х	
p ₂	gluon		х	p ₁₈	gluino	х	
p ₃	top quark	x		p ₁₉	stop squark		Х
p ₄	bottom quark	х		p ₂₀	sbottom squark		х
p ₅	tau	х		p ₂₁	stau		X
p ₆	charm quark	х		p ₂₂	scharm squark		Х
p ₇	strange quark	x		p ₂₃	sstrange squark		Х
p ₈	muon	х		p ₂₄	smuon		Х
p ₉	tau-neutrino	x		p ₂₅	stau-sneutrino		Х
P ₁₀	down quark	х		p ₂₆	sdown squark		Х
P ₁₁	up quark	x		p ₂₇	sup squark		Х
P ₁₂	electron	х		p ₂₈	selectron		Х
P ₁₃	muon-neutrino	x		p ₂₉	smuon-sneutrino		Х
P ₁₄	electron-neutrino	x		p ₃₀	selectron-sneutrino		х
P ₁₅	W/Z's		х	p ₃₁	zino	х	
p ₁₆	photon		х	p ₃₂	photino	х	

W/Z's

- Transient W⁻ matter associated with transient H force (Peter Higgs theory)
 - Half-lives of 10⁻²⁵ s
- Higgs force (boson) proposed in 1964
 - Scientists confirmed its existence in 2012 at LHC
 - In 2013, Nobel prize awarded to Peter Higgs and Francois Englert
- Our universe's energy is 10⁵⁴ kg
 - Dark energy represents 69% or .69 x 10⁵⁴ kg
 - Higgs theory incapable of defining dark energy (transient particles)
 - My assumption specifically look for permanent higgs forces to define dark energy
 - My assumption dark matter 26%, zino and photino 13%, 3 permanent Higgsinos 13%
 - Atomic/subatomic matter (up quark, down quark, electron, electron-neutrino, muon-neutrino, tauneutrino 5%)
- This Updated TOE includes both permanent matter particles (up quark) and transient matter particles (W⁻)
 - Created during spontaneous symmetry breaking
 - Undersized porcupine (up quark) and its higgs force (overgrown spines)

FIG. 13. Up quark with quantized higgs force particles (3 dimensional).

Particle Creation - Big Bang Timeline

12 Fundamental Matter Particles + 12 higgs Forces

- 6 permanent matter particles and their higgs forces
 - p_{11} up quark + h_{11} higgs force
 - p_{10} down quark + h_{10} higgs force
 - p₁₂ electron + h₁₂ higgs force
 - p₉ tau neutrino + h₉ higgs force
 - p₁₃ muon neutrino + h₁₃ higgs force
 - p₁₄ electron neutrino + h₁₄ higgs force
- 6 transient matter particles and their higgs forces
 - p₃ top quark + h₃ higgs force
 - p₄ bottom quark + h₄ higgs force
 - p₅ tau + h₅ higgs force
 - p₆ charm quark + h₆ higgs force
 - p₇ strange quark + h₇ higgs force
 - p₈ muon + h₈ higgs force

Baryogenesis and Spontaneous Symmetry Breaking

- After the start of fundamental particles creation
 - Baryogenesis occurred for both transient (W⁻) and permanent particles (up quark)
- Followed by spontaneous symmetry breaking
 - Transient (W⁻) and permanent matter particles (up quark)
 - Intimate relationship between creation time and energy/mass
 - W⁻ at 80 GeV, up quark 2.3 MeV
 - Created undersized porcupine (W⁻ and up quark) and their higgs forces (overgrown spines)
- 8 permanent higgs forces associated with 8 permanent matter particles was dark energy
 - 8 permanent matter particles were: up quark, down quark, electron, electron-neutrino, muonneutrino, tau-neutrino, zino, photino
- 12 superpartner and 12 associated Higgsinos were X-bosons (E.J.Chaisson)
 - Latent energy which expanded our universe during inflationary period
 - 8 permanent higgs forces (dark energy) expanded our universe after the start of fundamental particle creation

References

- Alan Guth in his book "Inflationary Universe" 1997, Figure 12.1 on page 209 implied a relationship between a matter particle (up quark) and a Higgs Field A and a Higgs Field B
 - Represented as FIG. 10. Up quark baryogensis and spontaneous symmetry breaking function
- Gordon Kane in his article (Sci. Am. 293,1 (2005))
 - Implied a relationship between a permanent matter particle (up quark) and a permanent higgs force
- Ambiguous results from Guth and Kane
- These two astrophysicists and others (Peter Higgs, Michael Turner, Rocky Kolb, Edward Witten ignored me and my communications with them)
 - I made assumptions and created both the original TOE and this Updated TOE

FIG. 10. Up quark baryogenesis and spontaneous symmetry breaking function.

FIG. 10. Description

- Z axis represented super force energy density allocated to all up quarks in our universe
 - X axis was associated with an up quark
 - Y axis was associated with an anti-up quark
- Up quark baryogenesis, began when the ball was at its peak position (x=0, y=0, z=2)
 - The ball moved down FIG. 10, equidistant between the X and Y axes
 - Super force particles condensed into up quarks and anti-up quarks
 - The ball returned to its peak position
 - After n of these condensation/evaporation cycles, the ball moved to the FIG. 10 ball position

FIG. 10. Description, cont.

- When the ball was in its peak position, baryogenesis had not occurred
 - When the ball was in FIG. 10 position, baryogenesis had occurred
- During fundamental particle creation, it took 13.8 billion years for the ball (all up quarks + higgs forces in our universe) to move vertically down to its current position just above the vacuum circle for up quarks
 - Approximately 3.28 x 10⁸⁰ up quarks in our universe and their three dimensional higgs forces
- At t=5.4 x 10⁻⁴⁴ s or Planck time, four forces (gravitational, electromagnetic, strong, weak) were unified
- At t=10⁻³⁶ s, three forces (electromagnetic, strong, weak) were unified

=		Matter		Force	
	u	С	t	γ	
Ouarks	up	charm	top	photon	
	d	s	b	Z	
	down	strange	bottom	Z particle	
Leptons	Ve	V _μ	Vτ	W	
	electon- neutrino	muon- neutrino	tau- neutrino	W particle	
	е	μ	τ	g	
	electron	muon	tau	gluon	
				Н	
				Higgs force	

FIG. 11. SM matter and force particles.

Standard Model (SM)

- SM is gold standard of particle physics
- SM inadequately represents our universe's matter and force particles because it
 - Defines only a single higgs force (H) associated with a W⁻
 - Does not include
 - Dark matter
 - Dark energy
 - Graviton and gravitino

FIG. 12. Beyond the SM Physics Solution

- Brian Greene "Strings of string theory are as long as a Planck length and point like" (Elegant Universe, p. 136)
 - I interpreted this as a point particle in Planck cube
 - Point particles can represent anything in our universe: [average human, supermassive quark star (matter), galaxy, or entire universe]
- 64 particles of FIG. 12
 - 47 fundamental point particles or superstrings in a Planck cube
 - 17 are higgs forces (8 permanent, 9 transient)
 - Overgrown spines
- Emphasizes higgs particles' supremacy
- Differentiates between important permanent and less important transient particles

FIG. 12. Beyond the SM physics solution.

Super Supermassive Quark Star (matter) Formation Summary

- Stars formed via molecular cloud gravitational collapse, star accretion, and star merger
 - For a star mass $< 8 M_{\odot}$, star collapses to white dwarf star
 - For a star mass > 8 and < 20 M_{\odot} , star collapses to neutron star
 - For a star mass > 20 and < 100 M_{\odot} , star collapses to quark star (matter)

Super Supermassive Quark Star (matter) Formation Summary, cont.

- My assumption was at the center of each galaxy in our universe, was a stable super supermassive quark star (matter)
 - There is extensive variation in sizes of stable super supermassive quark star (matter)
 - Variation is 6x10⁶
 - Sagittarius A is relatively small with a mass of 4 million $\rm\,M_{\odot}$
 - Other galaxies harbor super supermassive quark star (matter) thousands of times more massive than Sagittarius A

Super Supermassive Quark Star (matter)

- 14 permanent matter/force particles are within event horizon volume
- 8 higgs forces (dark energy) are outside the 14 permanent matter/force particles volume and extend to edge of universe
- Super Supermassive Quark Star (matter) is a "black hole" which swallows matter/force particles
- Event horizon is a spherical boundary around a black hole where the gravitational pull is so strong neither matter or light can escape

Quantum Mechanics and Einstein's General Relativity

- There is a disconnect between quantum mechanics and Einstein's General Relativity
 - The quantum mechanics/general relativity boundary is
 - Start of inflation t=5 x 10⁻³⁶s
 - General Relativity applicable all times between t=0 and t=13.8 billion years
 - Quantum Mechanics applicable for all times except between 0 and 5x10⁻³⁶s
 - Between 0 and 5 x 10^{-36} s, quantum mechanics not applicable
 - Our universe was a spherical singularity smaller than a Planck cube

FIG. 22. A TOE physics solution jigsaw puzzle.

Einstein-Rosen Bridge (Wormhole)

- Brian Greene described a doughnut to beach ball transformation (Elegant Universe, p. 327)
 - Assumed transformation began after t=0 (our universe became spherically shaped)
 - Einstein-Rosen Bridge (wormhole or two doughnut physical singularities)
 - Misconception of wormhole
 - Not a tunnel where spacecrafts move through it in either direction
 - Wormhole consists of a black hole (energy) doughnut singularity and a white hole (energy) doughnut singularity
 - Black hole (energy) swallows matter/force particles, existed before t=0 in our precursor universe
 - White hole (energy) emits matter/force particles, existed after t=0 in our universe
 - Transformation from black hole (energy) to white hole (energy)
 - Decrease in entropy
 - Entropy increases in a closed system
 - Only possible if the increase in entropy in the precursor universe exceeds the decrease in entropy of the black hole (energy) to white hole (energy) transformation

Conclusions

- Higgs forces and particles (Higgsinos) constituted 82% of our universe's total energy
- Because of my engineering background, and deafness
 - Astrophysicists ignored my TOE solution of 12/01/2020
 - Solution of dark energy, dark matter, and point particles
- My TOE included both permanent matter particles (up quark) and transient matter particles (W⁻)
- In superstring theory, a point particle in a Planck cube is the size of matter and force particles
- FIG. 12 Beyond the SM physics solution replaced the SM
 - Emphasized higgs particles' supremacy
 - Differentiated between important permanent and less important transient particles
- Thus, both the original TOE and this Updated TOE were created

Corrections

- TABLE I Fundamental SM/supersymmetric matter and force particles
 - Change p₁₅ W/Z's to H force particle
 - Change p₃₁ to W⁻
 - Delete p₁ graviton and p₁₇ gravitino
- FIG. 12. Beyond the SM Physics Solution
 - Change Higgs h₁₅ to H
 - Change W/Z's p₁₅ to W⁻
- Original TOE page 59
 - Three supportive arguments for charge, parity, time (CPT) violation
 - CPT invalid at Planck scale (T. D. Lee)
 - Highly curved spacetime [black hole (energy)] violates CPT (N. E. Mavromatos)
 - Unitarity and entropy preservation not respected (F. Hulpke)